

Monitoring of PM₁₀, PM_{2.5} and Black Carbon concentrations at Urban Environments in Bangladesh

Bilkis A. Begum Bangladesh Atomic Energy Commission

Background

Scenario

- -Rapid urbanization
- -Increased economic activity
- -High population density
- -Increasing number of motor vehicles and industries
- -Traffic congestion
- -Transboundary transport

Air Quality Parameters

- o **PM** (**PM**₁₀, **PM**_{2.5})
- o SO_x
- o NO_x
- o **CO**
- o Ozone
- o Trace elements in PM's etc.
- The most serious pollutant of concern in Bangladesh, especially in cities, is the particulate matter (PM)

Adaptation of policies taken by the Government to reduce the PM emission from motor vehicle *These are*

- o banning of use leaded gasoline from July 1999
- o improved training of engine mechanics, import and marketing of mineral oil without additives and set minimal standards for lubricants
- banning of two-stroke three-wheel taxis from January 2003 and removal of trucks and buses that were more than 20 years old
- o a phased reduction of gasoline-powered by introducing CNG, &
- o electronic traffic signals to increase the mobility of vehicles.

Concentration (µg/m³)of Pb (Fine PM) in ambient air

2010

8

Pb concentration (µg/m3) in Air

Fine PM concentrations as a function of time showing the likely effect of banning two-stroke engine on air quality in Dhaka

$\rm PM_{2.2}/\rm PM_{10}$ and $\rm BC/\rm PM_{2.2}$ ratios in different years SR sites

Hence, control of emission from the combustion sources is good achievement of policies adaptation

Average source contributions derived from the PMF modeling

Source	Fine PM samples (µg/m ³)						
	2001-2002		2005	-2006	2007-2009		
	Mass	BC	Mass	Mass BC		BC	
Motor vehicle	7.16	2.50	5.62	0.38	12.1	0.02	
Brick kiln	2.23	1.37	11.1	4.14	7.59	7.41	
Metal smelter	1.87	0.00	1.94	0.53	-	-	
Sea salt	0.19	0.00	0.60	0.00	2.12	0.00	
Two Stroke/Zn	1.75	1.11	1.94	1.07	1.49	0.62	
Soil dust	1.92	0.0	2.74	0.18	3.21	0.02	
Road dust	3.63	1.63	5.14	1.09	4.97	0.57	
Fugitive Pb			-	-	2.22	0.01	
RM	18.7	6.61	29.1	7.38	33.7	8.12	
MM	22.1	7.90	30.5	9.23	37.3	8.21	

The question is whether we are responsible for all pollutants or it has other sources

Map of sampling locations in Bangladesh

Sample collection (*DoE*)

Location of sampling site at Dhaka

City	Location	Lat/Lon	Monitoring capacity
Dhaka	Farm Gate (CAMS-2)	23.76°N, 90.39°E	$PM_{2.5-10}$, $PM_{2.5}$, CO, SO ₂ , NO _X , O ₃ , and HC with meteorological parameters.
Chittagong	TV station, Khulshi (CAMS-3)	22.36°N, 91.80°E	$PM_{2.5-10}$, $PM_{2.5}$, CO, SO ₂ , NO _X , O ₃ , and HC with meteorological parameters.
Rajshahi	Sapura, Rajshahi Cantonment area (CAMS-4)	24.38°N, 88.61°E	$PM_{2.5-10}$, $PM_{2.5}$, CO, SO ₂ , NO _X , O ₃ , and HC with meteorological parameters.
Khulna	Baira (CAMS-5)	24.38°N, 88.61°E	$PM_{2.5-10}$, $PM_{2.5}$, CO, SO ₂ , NO _X , O ₃ , and HC with meteorological parameters

The summary of PM and BC concentration (µg/m³) during the sampling periods

Parameter	Rajshahi		Dhaka		Khulna			Chittagong				
	PM10	PM2.5	BC	PM10	PM2.5	BC	PM10	PM2.5	BC	PM10	PM2.5	BC
Min	24.3	14.9	3.07	21.1	14.3	1.05	10.3	6.20	1.44	13.2	9.34	0.84
Max	1526	842	46.1	419	212	17.2	579	371	23.0	345	211	11.4
Mean	244	155	131	130	65.1	7.20	112	64.7	5.84	117	73.3	4.32
STD	172	112	7.05	74.2	41.2	3.31	88.4	56.8	3.58	78.5	50.7	2.67
Median	204	121	10.8	119	56.0	7.40	95.6	52.0	5.2	111	74.2	3.32
Sample Size	211		185		145		114					
Sampling Period	01/09/10 to 31/07/12		23/08/10 to 01/07/12		16/09/10 to 23/02/12		03/12/10 to 29/02/12					

Seasonal variation of $PM_{2.5}\,(\mu g/m^3\,)in$ four stations

Year	Season	Rajshahi	Dhaka	Khulna	Chittagong	
		Mean±STD	Mean±STD	Mean±STD	Mean±STD	
2010- 11	Monsoon	-	30.3 ±11.6	-	-	
	Post- monsoon	127 ±66.4	68.6 ±32.7	51.3 ±29.3	_	
	Winter	277 ±94.0	104 ±49.8	120 ±72.9	113 ±47.4	
2011- 12	Pre- monsoon	143 ±79.6	50.0 ±35.5	42.5 ±28.9	56.6±39.4	
	Monsoon	55.4 ±26.5	26.8 ±10.5	19.6 ±11.8	11.7 ±2.32	
	Post- monsoon	109 ±31.8	65.8 ±21.4	63.1 ±37.8	60.5 ±45.9	
	Winter	271 ±140	101 ±23.6	84.6 ±52.6	33.7 ±0.71	
2012	Pre- monsoon	151 ±77.5	39.1 ±23.1	-	-	
	Monsoon	100 ±28.2	41.3 ±11.1	-	_	

The mean, standard deviation and threshold value of fine PM and BC concentrations ($\mu g/m^3$) during sampling period

Parameter	Statistics	Rajshahi	Dhaka	Khulna	Chittagong
Fine PM	Mean	155	65.1	64.7	73.3
	Median	121	56.0	52.0	74.2
	STD	112	41.2	56.8	50.7
	Threshold Value	379	147	178	175
BC	Mean	13.1	7.20	5.84	4.32
	Median	10.8	7.40	5.20	3.32
	STD	7.05	3.31	3.58	2.67
	Threshold Value	27.2	13.8	13.0	9.66

Variation of PM_{2.5} concentrations with time in four cities

Wind directional pattern

Four season: Pre-monsoon, Monsoon, Post-monsoon, Winter

Air parcel movement (Backward trajectory)

Typical wind directional pattern during December, January and February respectively (During the winter time wind mainly comes from northwest direction, e.g. Dhaka)

Air parcel backward trajectories showing the long range transport of fine PM

Pollution and fog mixed at the base of the Himalayas in India in early December 2010

http://earthobservatory.nasa.gov/NaturalHazards/view.php?i

<u>d=47742</u>

Dull gray haze hovers over northern India and Pakistan, and parts of Bangladesh which results from a combination of agricultural fires, urban and industrial pollution, and a regional temperature inversion.

Dust storm over the Arabian Peninsula http://thewatchers.adorraeli.com/2012/02/06/dust-storm-insaudi-arabia/

Transhound and Evidence

Sampling sites of Neighboring Countries

Revenue view of the second

Time series plots of fine soil concentrations in Bangladesh, India, Pakistan and Sri Lanka

Air parcel back trajectories showing long range transport of soil dust in Bangladesh and India in February 2003

Time series plots of fine Smoke contribution

Air parcel back trajectories showing the likely sources areas for smoke

3 to 15 November, 2003

Crop Residue Burning: A Threat to South Asian Air Quality, *Eos*, Vol. 95, No. 37, 16 September 2014

Fig. 1. (a) The Terra satellite's Moderate Resolution Imaging Spectroradiometer (MODIS) image from 30 October 2013, showing transport of plumes from crop residue burning in Punjab (yellow circle shows crop residue burning areas) toward the east of the Indo-Gangetic plain (IGP) and also toward border areas of Pakistan. (b) MODIS image from 1 November 2013, showing the same plume form intense smog and fog over the IGP

HAZE OCCURRED IN SINGAPORE IN OCTOBER 2006, AND WAS CAUSED BY SMOKE FROM FIRES IN INDONESIA BEING BLOWN BY SOUTH-WESTERLY WINDS.

Conclusions

To address the air pollution issues locally

- a) Emission from Motor vehicles
- b) Reduction of soil dust including road dust and
- c) Replacement of existing brick kiln with energy efficient and environment friendly brick production technology, cook stove and rice parboiling system.
- It is also necessary to address the air pollution issues regionally due to Transboundary Effect which increase local air pollution
 - a) Coal-fired power plants in India using high S coal in India
 - b) Similar problem with BC, biomass/agricultural waste 30 May 2016

Thank You

